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SOME SETS OBEYING HARMONIC SYNTHESIS 

BY 

Y I T Z H A K  K A T Z N E L S O N  A N D  O. C A R R U T H  M c G E H E E  t 

ABSTRACT 

Let X he a (not necessarily closed) subspace of the dual space B* of a separable 
Banach space B. Let X1 denote  the set of all weak* limits of sequences in X. 
Define X,, for every ordinal number  a, by the inductive rule: X~ = (Ub<~ 
There  is always a countable ordinal a such that X~ is the weak* closure of X ;  
the first such a is called the order of X in B* 

Let E be a closed subset  of a locally compact  abelian group. Let  PM(E) be 
the set of pseudomeasures ,  and M(E) the set of measures ,  whose supports  are 
contained in E. The set E obeys synthesis if and only if M(E) is weak* dense in 
PM(E).Varopoulos constructed an example in which the order of M(E) is 2. 
The authors  construct, for every countable ordinal a, a set E in R that obeys 
synthesis,  and such that the order of M(E) in PM(E) is a. 

Let G and F be locally compact  abelian groups, each the dual of the other. Let 

A = A (F) be the Fourier representat ion of the convolution algebra L 1(G). The 

Banach space dual of A is the space PM = PM(F)  consisting of all the 

distributions S on F such that S E L| These distributions are called 

pseudomeasures, and the dual space norm IISlI~M equals I1 11-. For a closed set 

E CF, let PM(E) be the set of pseudomeasures,  and M(E) the set of measures,  

whose supports are contained in E. Let N(E) be the weak* closure of M(E) in 

PM. The largest closed ideal in A whose hull is E is 

I(E) = {f ~ A : f- '(O) ~ E} = M(E) l = N ( E )  • 

and the smallest such ideal is Io(E), the closure of 

{f E A : f - l (0)  is a neighborhood of E } .  

The set E is said to obey harmonic synthesis, or to be a set of synthesis, if 
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I (E)  = Io(E) or, equivalently, if N ( E ) =  PM(E) .  For discussions of the basic 

theory of harmonic synthesis, see the books by Kahane ([1]) and Rudin ([5]). 

When B is a separable Banach space, and X is a linear submanifold of the 

dual space B*,  let X1 denote the set of all weak* limits of sequences in X. Then 

Xl is also a linear submanifold. Define Xs for every ordinal number s by the 

inductive rule, Xs = ( 1,3 ,<,X,)i. The first countable ordinal s such that X, is the 

weak* closure of X is called the order of X. For constructions of linear 

submanifolds of every possible order in the Banach space H" ,  see [6]; in the 

space 11, see [4]. 

Varopoulos constructed a set E such that the order  of M ( E )  is 2. In [2] we 

gave a version of his construction and raised the question of whether  the order  of 

M ( E )  can be higher than 2. The purpose of this paper is to answer this question 

by proving the following result, 

THEOREM. For every countable ordinal number s, there is a subset E of the 

circle group such that E obeys harmonic synthesis and the order of M ( E )  is s. 

We shall consider the circle group T as identified with the real numbers 

modulo 2~-, or with the interval [0,2~'). We shall make use of the following 

standard lemma. 

LEMMA. Let F be a perfect null subset of T. For each n _->1, let 

{/.k : 1 _-< k < 2"} be a set of disjoint open intervals chosen so that F C 13~.~I.k, 

I~.+~)~2k ~)U/~.+~)~zk)CI.k, and maxkdiamI.k--#0.  For V E P M ( F ) ,  let V.E 

denote the restriction of V to I.k 71 F. 

(1) If  there is a constant B such that 

2 n 

X II v.k IIPM B for every n e ], 
k = l  

then V E M(F) .  

(2) If  Vff: N(F) ,  then ]'or every K > O, it is the case for all sufficiently large n 
that 

2 n 

I I ( v -  II,M ---- K for every U �9 N(F). 
k = l  

PROOf. (1) If f �9 C(T) ,  and if for some n, f is constant on a neighborhood of 

/,k A F for each k, then 

I(f, V)] = ~ (f, V.k) 

<-- ~ If ( F A I.k )111 V,k ]IPM <--]lfllc,T,B. 
k 
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Thus V defines a bounded linear functional on a dense subspace of C(T) ,  so that 

it must be a measure.  

(2) Suppose, to the contrary, that for some K and infinitely many n there 

exists U(")E N(F)  such that 

2" 

E II(v- u'"')ok II M < K 
k = !  

The pseudomeasures  U ~") form a bounded sequence in N(F) ,  and we may 

suppose that it converges weak* to some U E N ( F ) .  It follows that 

Y~,II (V - U),k IIpM ~ K for every n, so that by part  (1), V - U is a measure and 

hence V E N(F) ,  which is false. The lemma is proved. 

PROOF OF THE THEOREM. We shall proceed by induction on s to construct the 

sets E of the theorem, not in T, but (for s > 1) in the countably infinite product  

group T ~, because this makes the procedure easier to describe and to visualize. 

Then we shall explain how to prove the theorem as stated, with E C T. 

Let F be a perfect compact  null set that contains no rational multiples of ~r, 

that is contained in (1,2), and that disobeys synthesis. Let S be an e lement  of 

PM(F)  that lies outside N(F) .  The set F and the pseudomeasure  S are now 

fixed for the duration of the proof. 

Let H = I,.J ~=1 Cq, where 

Cq = { x = 2 7rp/ q : p is an integer, x E (1,2), and dist ( x, F) <- 2 r q }. 

It is well known (see [1, sec. V.3]) that the set F U H obeys synthesis in a 

particularly nice way. To wit, if U ~ P M ( F  t.; H),  then there is a canonically 

defined sequence of discrete measures ~q ~ M(C~) such that II~qll~, ~IIUII~,  

and txq ~ U weak*. Thus, of course, the set F LI H satisfies the theorem in the 

case s = 1. 

Let {I,k} be a collection of open intervals as described in the lemma. Let 

{e,}7=oU{e,~j :1--- n < ~ ,  1 =< k =2" ,  1-<_j < ~ }  

be an orthogonal  set of unit vectors in T | Define some subsets of T | as follows: 

Fo = (xeo : x E F}, 

F . = { x ( e o + 2 - " e , ) : x E F }  for n>=l ,  

F,~j = {x (eo + 2-"e, + 2 -"-k-je.kj) : x E (F U H )  f'l/.~ }, 

H , =  U~ll,.J*f~,F.kj,  E = F o U  I,.J 7 . , (F .  U H . ) .  

We claim that E obeys synthesis and that the order  of M ( E )  is 2, 
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Let us offer a few remarks  to explain the basic idea of the construction. Let  

V = E,~, V,, where V~ ~ PM(D,) and {D,},~, is a set of disjoint line segments in 

R m whose direction vectors form an independent  set. It is easy to show that the 

range of f" equals the sum of the ranges of the ~ ,  and consequently that 

Y  =,IIv, II M --< 1211vII M. If D = U D, is considered as a subset of T m instead of 

R m, and if D C {(x,) E T '~ :t x, { < e, }, then by standard arguments  E?_~ II v, IPM --< 

(12H7'=~(1 + 2e,))ll vII M. The set E defined above is the union of parts F., F.kj 

contained in disjoint line segments whose direction vectors form an independent  

set; and E lies inside a set of the form {(x,)E T| Ix, {< e,} such that II7-~(1 + 

2e~) < oo. It follows that for every U E PM(E), the restrictions U., U,,kj of U to 

F., F.kj, respectively, are well defined, and that there is a constant Q indepen- 

dent of U such that 

 llu llPM + IIu  ,ll   olluIl  . 
n n , k , j  

Therefore,  in order to show that U E N ( E ) ,  it suffices to show that each of the 

restrictions is in N(E). It is an easy exercise to show that, in fact, U.kj E 
M(F,.Ej)I, U. E M(F. U H.) I  for n > 0, and UoE M(E)2. Thus in particular, E 

obeys synthesis and the order  of M(E) is at most 2. 

Let So denote the copy of S that lives on Fo, defined by So(uo, u~,. �9 �9 ) = S(uo). 

We shall prove that So ~ M(E) ,  and hence that the order of M(E) is at least 2, 

by showing that if {/z ~ is a sequence in M(E) that converges to some 

Uo E PM(Fo), then Uo E N(Fo). Let b = sup, II "'II M. Fix m = 1. For every n, the 

restriction of /x t~ to F, U H, converges weak* to zero. Therefore  we may 

suppose without loss of generality that /z t') vanishes on F. U H. for 1 =< n < m 

and for all i. Let  v~ ') and po) be the restrictions o f / z  ~ to U 7~,~ U T~F.k~ and 

Fo U U 7=,.F,, respectively. We may suppose that p O ) ~  po+ p~ weak*, where 

poEN(Fo) and p~EPM( U ~=mF.). Let VE be the weak* limit of v~ ). Then 

E~'_-~ = U - p o - p ~ ,  and the restriction of vk to Fo is (U-po),~k.  Therefore  

2m 

k ~ l  k k i i k 

Q3supll "'llPM O3b. 
i 

Since m is arbitrary, it follows that Uo - po is a measure  and hence Uo E N(Fo). 
The theorem is proved for the case s = 2. 

We shall now describe the general induction step that proves the theorem for 



92 Y. KATZNELSON AND O. C. McGEHEE Israel J. Math. 

the case of an arbitrary countable ordinal number s > 2 .  Our inductive 

hypothesis is as follows. For each t, 1 < t < s, there is a set 

E= E(t)= Fo U 0 (Fn U H , )  
n = l  

such that the order  of M(E) is t. Each Fn is a copy of F and carries a copy Sn of 

S. Let M ( E ) o =  M(E). The pseudomeasure So is not in U ,<,M(E). ,  and 

fur thermore S,~ I..J .<~M(F. U H,), if to< t; but Sn E 0 .<,M(F, U H~). for 

each n => l, so that So E M(E),. The sets F, and the sets F, kj that make up the H~ 

lie on disjoint line segments whose direction vectors are distinct and make up an 

orthogonal family. Thus if U E PM(E), then U is the sum of its restrictions to 

these sets, and the sum of the norms of these restrictions is bounded by QII U[IpM. 

Let  us select a sequence of such sets, 

E p = F o U  0 ( F ~ ) U H ~  )) ( p = 1 , 2 , . . - ) .  

If s has a predecessor, let all the sets Ep be the same, namely E(s -1 )  as 

described above. If s is a limit ordinal, let {t(p)} be an enumeration of the 

ordinals less than s, and let Ep be E(t(p)), requiring that the same countably 

infinite set of direction vectors be used in the construction of each E r 

We shall modify the sets Ep and then put them together to form a set /~, 

obeying synthesis, such that the order of M(/~) is s. Let {fp}~=l (..J 

{era : 1 =< p < 0% 1 _--- q ~ 2 ~} be a set of unit vectors whose union with the set of 

unit vectors used in the construction of the sets Ep is an orthogonal set. Let 

Fp = {x (eo + 2-~fp) : x E F}, 

Pp,q = {y + x (2 - •  + 2-P-"-qe~) : y E F~ ~ U H~ p~, x = ~'y, and x E I~}, 

where try is the projection of y on eo; 

&= u =FoU 0 
n , q  n ~ l  

It is an easy exercise to show that /~ obeys synthesis and that the order of M(/~) 

is at most s. It remains to show that So ~- M(E),. To do this, it suffices to show 

that if So < s and {/x t~ is a sequence in U ,<,oM(ff~), that converges weak* to 

Uo E PM(Fo), then Uo E N(Fo). The argument proceeds like the one for the case 

s = 2 .  

The theorem is proved for T ~. Analogous constructions may be carried out in 

other  groups. For example, it may be done in the complete direct sum 
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G = H~olZk, where Z~ is the finite discrete group {0, 1 , . . - ,  k -1} .  In fact, the 

sets E may be constructed to be subsets of the set 

Y = {(xj)~ G :xj = Oor 1}. 

Let X be the subset of T, 

X = { i ~ ( x j / j ! ) : x j = O  o r  1 } .  

Let A (Y) denote the algebra of restrictions to Y of the Fourier transforms on 

G. Let  A(X) be defined analogously. By Theorem 1.11 of [7], A(Y) is. 

isomorphic to A (X). It follows that the theorem is true as stated, with E C T. 

We obtained these constructions as a byproduct of efforts to solve these two 

open questions: (1) Is the union of two sets of synthesis also a set of synthesis? (2) 

Is every set of synthesis a Ditkin set? For a long list of related open problems, 

see [3, p. 222-223]. 
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