SOME SETS OBEYING HARMONIC SYNTHESIS

BY

YITZHAK KATZNELSON AND O. CARRUTH MCGEHEE[†]

ABSTRACT

Let X be a (not necessarily closed) subspace of the dual space B^* of a separable Banach space B. Let X_1 denote the set of all weak* limits of sequences in X. Define X_a , for every ordinal number *a*, by the inductive rule: $X_a = (\bigcup_{b \le a} X_b)_1$. There is always a countable ordinal a such that X_a is the weak* closure of X; the first such a is called the *order* of X in B^* .

Let E be a closed subset of a locally compact abelian group. Let *PM(E)* be the set of pseudomeasures, and $M(E)$ the set of measures, whose supports are contained in E. The set E obeys synthesis if and only if $M(E)$ is weak^{*} dense in *PM(E).Varopoulos* constructed an example in which the order of *M(E)* is 2. The authors construct, for every countable ordinal a , a set E in R that obeys synthesis, and such that the order of $M(E)$ in $PM(E)$ is a.

Let G and Γ be locally compact abelian groups, each the dual of the other. Let $A = A(\Gamma)$ be the Fourier representation of the convolution algebra $L^1(G)$. The Banach space dual of A is the space $PM = PM(\Gamma)$ consisting of all the distributions S on Γ such that $\hat{S} \in L^{\infty}(G)$. These distributions are called *pseudomeasures,* and the dual space norm $||S||_{PM}$ equals $||\hat{S}||_{\infty}$. For a closed set $E \subset \Gamma$, let *PM(E)* be the set of pseudomeasures, and *M(E)* the set of measures, whose supports are contained in E. Let $N(E)$ be the weak^{*} closure of $M(E)$ in *PM.* The largest closed ideal in A whose hull is E is

$$
I(E) = \{f \in A : f^{-1}(0) \supset E\} = M(E)^{\perp} = N(E)^{\perp},
$$

and the smallest such ideal is $I_0(E)$, the closure of

 ${f \in A : f^{-1}(0)$ is a neighborhood of E .

The set E is said to *obey harmonic synthesis,* or to be a *set of synthesis,* if

^{*} This work was done in Jerusalem, when the second-named author was a visitor at the Institute of Mathematics of the Hebrew University of Jerusalem, with the support of an NSF International Travel Grant and of NSF Grant GP33583.

Received December 12,1974

 $I(E) = I_0(E)$ or, equivalently, if $N(E) = PM(E)$. For discussions of the basic theory of harmonic synthesis, see the books by Kahane ([1]) and Rudin ([5]).

When B is a separable Banach space, and X is a linear submanifold of the dual space B^* , let X_1 denote the set of all weak* limits of sequences in X. Then X_1 is also a linear submanifold. Define X_s for every ordinal number s by the inductive rule, $X_s = (\bigcup_{i \leq s} X_i)_i$. The first countable ordinal s such that X_s is the weak* closure of X is called the *order* of X. For constructions of linear submanifolds of every possible order in the Banach space H^* , see [6]; in the space l^1 , see [4].

Varopoulos constructed a set E such that the order of $M(E)$ is 2. In [2] we gave a version of his construction and raised the question of whether the order of $M(E)$ can be higher than 2. The purpose of this paper is to answer this question by proving the following result,

THEOREM. *For every countable ordinal number s, there is a subset E of the circle group such that E obeys harmonic synthesis and the order of M(E) is s.*

We shall consider the circle group T as identified with the real numbers modulo 2π , or with the interval $[0,2\pi)$. We shall make use of the following standard lemma.

LEMMA. Let F be a perfect null subset of T. For each $n \geq 1$, let ${I_{nk} : 1 \le k \le 2^n}$ *be a set of disjoint open intervals chosen so that* $F \subset \bigcup_{k=1}^{2^n} I_{nk}$, $I_{(n+1)(2k-1)} \bigcup I_{(n+1)(2k)} \subset I_{nk}$, and max_k diam $I_{nk} \to 0$. For $V \in PM(F)$, let V_{nk} *denote the restriction of V to* $I_{nk} \cap F$ *.*

(1) *If there is a constant B such that*

$$
\sum_{k=1}^{2^n} ||V_{nk}||_{PM} \leq B \text{ for every } n \geq 1,
$$

then $V \in M(F)$ *.*

(2) If $V \notin N(F)$, then for every $K > 0$, it is the case for all sufficiently large n *that 2 n*

$$
\sum_{k=1}^{2^n} \|(V-U)_{nk}\|_{PM} \geq K \text{ for every } U \in N(F).
$$

PROOF. (1) If $f \in C(T)$, and if for some n, f is constant on a neighborhood of $I_{nk} \cap F$ for each k, then

$$
|\langle f, V \rangle| = \left| \sum_{k} \langle f, V_{nk} \rangle \right|
$$

\n
$$
\leq \sum_{k} |f(F \cap I_{nk})| \|V_{nk}\|_{PM} \leq \|f\|_{C(T)} B.
$$

Thus V defines a bounded linear functional on a dense subspace of $C(T)$, so that it must be a measure.

(2) Suppose, to the contrary, that for some K and infinitely many n there exists $U^{(n)} \in N(F)$ such that

$$
\sum_{k=1}^{2^n} \|(V - U^{(n)})_{nk}\|_{PM} < K.
$$

The pseudomeasures $U^{(n)}$ form a bounded sequence in $N(F)$, and we may suppose that it converges weak^{*} to some $U \in N(F)$. It follows that $\sum_{k=1}^{2^n} ||(V-U)_{nk}||_{PM} \leq K$ for every n, so that by part (1), $V-U$ is a measure and hence $V \in N(F)$, which is false. The lemma is proved.

PROOF OF THE THEOREM. We shall proceed by induction on s to construct the sets E of the theorem, not in T, but (for $s > 1$) in the countably infinite product group T^* , because this makes the procedure easier to describe and to visualize. Then we shall explain how to prove the theorem as stated, with $E \subset T$.

Let F be a perfect compact null set that contains no rational multiples of π , that is contained in $(1, 2)$, and that disobeys synthesis. Let S be an element of *PM(F)* that lies outside $N(F)$. The set F and the pseudomeasure S are now fixed for the duration of the proof.

Let $H = \bigcup_{q=1}^{\infty} C_q$, where

$$
C_q = \{x = 2\pi p/q : p \text{ is an integer, } x \in (1,2), \text{ and } \text{dist}(x, F) \leq 2\pi/q\}.
$$

It is well known (see [1, sec. V.3]) that the set $F \cup H$ obeys synthesis in a particularly nice way. To wit, if $U \in PM(F \cup H)$, then there is a canonically defined sequence of discrete measures $\mu_q \in M(C_q)$ such that $\|\mu_q\|_{PM} \leq \|U\|_{PM}$ and $\mu_q \rightarrow U$ weak*. Thus, of course, the set $F \cup H$ satisfies the theorem in the case $s = 1$.

Let ${I_{nk}}$ be a collection of open intervals as described in the lemma. Let

$$
\{e_n\}_{n=0}^{\infty} \cup \{e_{nkj}: 1 \leq n < \infty, 1 \leq k \leq 2^n, 1 \leq j < \infty\}
$$

be an orthogonal set of unit vectors in T^* . Define some subsets of T^* as follows:

$$
F_0 = \{xe_0 : x \in F\},
$$

\n
$$
F_n = \{x(e_0 + 2^{-n}e_n) : x \in F\} \text{ for } n \ge 1,
$$

\n
$$
F_{nkj} = \{x(e_0 + 2^{-n}e_n + 2^{-n-k-j}e_{nkj}) : x \in (F \cup H) \cap I_{nk}\},
$$

\n
$$
H_n = \bigcup_{k=1}^{2n} \bigcup_{j=1}^{\infty} F_{nkj}, E = F_0 \cup \bigcup_{n=1}^{\infty} (F_n \cup H_n).
$$

We claim that E obeys synthesis and that the order of $M(E)$ is 2.

Vol. 23, 1976 **HARMONIC SYNTHESIS** 91

Let us offer a few remarks to explain the basic idea of the construction. Let $V = \sum_{i=1}^{m} V_i$, where $V_i \in PM(D_i)$ and $\{D_i\}_{i=1}^{m}$ is a set of disjoint line segments in R^m whose direction vectors form an independent set. It is easy to show that the range of \hat{V} equals the sum of the ranges of the \hat{V}_i , and consequently that $\sum_{i=1}^{m} ||V_i||_{PM} \leq 12||V||_{PM}$. If $D = \bigcup D_i$ is considered as a subset of T^m instead of R^m , and if $D \subset \{(x_i) \in T^m : |x_i| < \varepsilon_i\}$, then by standard arguments $\sum_{i=1}^m ||V_i||_{PM} \le$ $(12\prod_{i=1}^{m}(1 + 2\varepsilon_i))\|V\|_{PM}$. The set E defined above is the union of parts F_n , F_{nkj} contained in disjoint line segments whose direction vectors form an independent set; and E lies inside a set of the form $\{(x_i) \in T^* : |x_i| < \varepsilon_i\}$ such that $\prod_{i=1}^{\infty} (1 +$ $2\varepsilon_i$) < ∞ . It follows that for every $U \in PM(E)$, the restrictions U_n , U_{nkj} of U to F_n , F_{nkj} , respectively, are well defined, and that there is a constant Q independent of U such that

$$
\sum_{n} ||U_{n}||_{PM} + \sum_{n, k, j} ||U_{nkj}||_{PM} \leq Q ||U||_{PM}.
$$

Therefore, in order to show that $U \in N(E)$, it suffices to show that each of the restrictions is in $N(E)$. It is an easy exercise to show that, in fact, $U_{nk} \in$ $M(F_{nk})_1$, $U_n \in M(F_n \cup H_n)_1$ for $n > 0$, and $U_0 \in M(E)_2$. Thus in particular, E obeys synthesis and the order of *M(E)* is at most 2.

Let S_0 denote the copy of S that lives on F_0 , defined by $\hat{S}_0(u_0, u_1, \dots) = \hat{S}(u_0)$. We shall prove that $S_0 \notin M(E)$, and hence that the order of $M(E)$ is at least 2, by showing that if $\{\mu^{(i)}\}$ is a sequence in $M(E)$ that converges to some $U_0 \in PM(F_0)$, then $U_0 \in N(F_0)$. Let $b = \sup_i ||\mu^{(i)}||_{PM}$. Fix $m \ge 1$. For every *n*, the restriction of $\mu^{(i)}$ to $F_n \cup H_n$ converges weak^{*} to zero. Therefore we may suppose without loss of generality that $\mu^{(i)}$ vanishes on $F_n \cup H_n$ for $1 \le n < m$ and for all *i*. Let $\nu_k^{(i)}$ and $\rho^{(i)}$ be the restrictions of $\mu^{(i)}$ to $\bigcup_{n=m}^{\infty} \bigcup_{j=1}^{\infty} F_{nkj}$ and $F_0 \cup \bigcup_{n=m}^{\infty} F_n$, respectively. We may suppose that $\rho^{(i)} \rightarrow \rho_0 + \rho_1$ weak*, where $\rho_0 \in N(F_0)$ and $\rho_1 \in PM(\bigcup_{n=m}^{\infty} F_n)$. Let ν_k be the weak* limit of $\nu_k^{(i)}$. Then $\Sigma_{k=1}^{2^m} \nu_k = U - \rho_0 - \rho_1$, and the restriction of ν_k to F_0 is $(U-\rho_0)_{mk}$. Therefore

$$
\sum_{k=1}^{2^{m}} \|(U_0 - \rho_0)_{mk}\|_{PM} \leq Q \sum_{k} \|\nu_k\|_{PM} \leq Q \sum_{k} \lim \sup_{i} \|\nu_k^{(i)}\|_{PM} \leq Q^2 \sup_{i} \|\sum_{k} \nu_k^{(i)}\|_{PM}
$$

$$
\leq Q^3 \sup_{i} \|\mu^{(i)}\|_{PM} \leq Q^3 b.
$$

Since *m* is arbitrary, it follows that $U_0 - \rho_0$ is a measure and hence $U_0 \in N(F_0)$. The theorem is proved for the case $s = 2$.

We shall now describe the general induction step that proves the theorem for

the case of an arbitrary countable ordinal number $s > 2$. Our inductive hypothesis is as follows. For each t, $1 \le t \le s$, there is a set

$$
E=E(t)=F_0\cup\bigcup_{n=1}^\infty (F_n\cup H_n)
$$

such that the order of $M(E)$ is t. Each F_n is a copy of F and carries a copy S_n of S. Let $M(E)_{0} = M(E)$. The pseudomeasure S₀ is not in $\bigcup_{\mu \leq M(E)_{\mu}} M(E)_{\mu}$ and furthermore $S_n \notin \bigcup_{u \leq y} M(F_n \cup H_n)_u$ if $t_0 < t$; but $S_n \in \bigcup_{u \leq t} M(F_n \cup H_n)_u$ for each $n \ge 1$, so that $S_0 \in M(E)$. The sets F_n and the sets F_{nkj} that make up the H_n lie on disjoint line segments whose direction vectors are distinct and make up an orthogonal family. Thus if $U \in PM(E)$, then U is the sum of its restrictions to these sets, and the sum of the norms of these restrictions is bounded by $Q||U||_{PM}$.

Let us select a sequence of such sets,

$$
E_p = F_0 \cup \bigcup_{n=1}^{\infty} (F_n^{(p)} \cup H_n^{(p)}) \qquad (p = 1, 2, \cdots).
$$

If s has a predecessor, let all the sets E_p be the same, namely $E(s-1)$ as described above. If s is a limit ordinal, let $\{t(p)\}\$ be an enumeration of the ordinals less than s, and let E_p be $E(t(p))$, requiring that the same countably infinite set of direction vectors be used in the construction of each E_r .

We shall modify the sets E_p and then put them together to form a set \overline{E}_p , obeying synthesis, such that the order of $M(\overline{E})$ is s. Let $\{f_p\}_{p=1}^{\infty}$ U ${e_{pq}: 1 \le p < \infty, 1 \le q \le 2^p}$ be a set of unit vectors whose union with the set of unit vectors used in the construction of the sets E_p is an orthogonal set. Let

$$
\bar{F}_p = \{x(e_0 + 2^{-p}f_p) : x \in F\},
$$

$$
\bar{F}_{p n q} = \{y + x(2^{-p}f_p + 2^{-p-n-q}e_{pq}) : y \in F_n^{(p)} \cup H_n^{(p)}, x = \pi y, \text{ and } x \in I_{pq}\},
$$

where πy is the projection of y on e_0 ;

$$
\bar{H}_p = \bigcup_{n,q} \bar{F}_{pnq}, \ \bar{E} = F_0 \cup \bigcup_{n=1}^{\infty} (\bar{F}_p \cup \bar{H}_p).
$$

It is an easy exercise to show that \bar{E} obeys synthesis and that the order of $M(\bar{E})$ is at most s. It remains to show that $S_0 \notin M(\overline{E})$, To do this, it suffices to show that if $s_0 < s$ and $\{\mu^{(i)}\}$ is a sequence in $\bigcup_{i \le s} M(\overline{E})_i$ that converges weak* to $U_0 \in PM(F_0)$, then $U_0 \in N(F_0)$. The argument proceeds like the one for the case $s=2$.

The theorem is proved for T^* . Analogous constructions may be carried out in other groups. For example, it may be done in the complete direct sum

 $G = \prod_{k=1}^{\infty} Z_k$, where Z_k is the finite discrete group $\{0, 1, \dots, k-1\}$. In fact, the sets E may be constructed to be subsets of the set

$$
Y = \{(x_i) \in G : x_i = 0 \text{ or } 1\}.
$$

Let X be the subset of T ,

$$
X = \left\{ \sum_{j=1}^{\infty} (x_j/j!) : x_j = 0 \text{ or } 1 \right\}.
$$

Let $A(Y)$ denote the algebra of restrictions to Y of the Fourier transforms on G. Let $A(X)$ be defined analogously. By Theorem 1.11 of [7], $A(Y)$ is. isomorphic to $A(X)$. It follows that the theorem is true as stated, with $E \subset T$.

We obtained these constructions as a byproduct of efforts to solve these two open questions: (1) Is the union of two sets of synthesis also a set of synthesis? (2) Is every set of synthesis a Ditkin set? For a long list of related open problems, see [3, p. 222-223].

REFERENCES

1. J.-P. Kahane, *S&ies de Fourier absolument convergentes,* Ergebnisse der Math. und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970.

2. Y. Katznelson and O. C. McGehee, *Some Banach algebras associated with quotients of LI(R),* Indiana Univ. Math. J. (1971), 419-436.

3. Th. K6rner, *A pseudofunction on a Helson set,* Ast6risque (Soc. Math. France) \$ (1973), 3-224.

4. O. C. McGehee, *A proof of a statement of Banach about the weak * topology,* Michigan Math. J. 15 (1968), 135-140.

5. W. Rudin, *Fourier Analysis on Groups,* Wiley, New York, 1962.

6. D. Sarason, *On the order of a simply connected domain,* Michigan Math. J. 15 (1968), 129-133.

7. R. Schneider, *Some theorems in Fourier analysis on symmetric sets,* Pacific. J. Math. 31 (1969), 175-195.

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL

AND

LOUISIANA STATE UNIVERSITY BATON ROUGE, LOUISIANA, U.S.A.